Search results for "causal entropy"

showing 1 items of 1 documents

Using Inverse Reinforcement Learning with Real Trajectories to Get More Trustworthy Pedestrian Simulations

2020

Reinforcement learning is one of the most promising machine learning techniques to get intelligent behaviors for embodied agents in simulations. The output of the classic Temporal Difference family of Reinforcement Learning algorithms adopts the form of a value function expressed as a numeric table or a function approximator. The learned behavior is then derived using a greedy policy with respect to this value function. Nevertheless, sometimes the learned policy does not meet expectations, and the task of authoring is difficult and unsafe because the modification of one value or parameter in the learned value function has unpredictable consequences in the space of the policies it represents…

0209 industrial biotechnologyreinforcement learningComputer scienceGeneral Mathematics02 engineering and technologypedestrian simulationTask (project management)learning by demonstration020901 industrial engineering & automationAprenentatgeInformàticaBellman equation0202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)Reinforcement learningEngineering (miscellaneous)business.industrycausal entropylcsh:MathematicsProcess (computing)020206 networking & telecommunicationsFunction (mathematics)inverse reinforcement learninglcsh:QA1-939Problem domainTable (database)Artificial intelligenceTemporal difference learningbusinessoptimizationMathematics
researchProduct